Efficient East-West oriented PV systems with one MPP-Tracker

INTRODUCTION

Approach: Comparative measurements of eastwest oriented PV systems with different installation variants

Variant 1: Installation of one single inverter (one MPP-Tracker) for east- and west-roof

ABSTRACT: The acceptance to install east-west oriented photovoltaic (PV) systems was rather subdued in the past. But nowadays the interest to mount PV systems on east-west roofs increases steadily. Although south orientation is more ideal, east-west oriented PV systems can generate substantial earnings as well. Moreover, due to the sharp drop in module prices increased demands for east-west plants are expected in the future. From the perspective of grid operators east-west oriented PV systems are desirable compared to south oriented PV systems because the energy is fed-in more evenly throughout the day, power peaks can be reduced and thus relieving the grid. Up to now it was assumed that east-west oriented PV systems require inverters for both orientations or at least one inverter with more MPP-Trackers (Maximum Power Point) to avoid mismatching losses. This poster will show an analysis of east-west oriented PV systems connected to one MPP-Tracker and demonstrate a high performance of such systems.

MEASUREMENT RESULTS

Variant 2: Installation of separate inverters for eastand west-roof

Low mismatching losses with installation variant 1

Example sunny day:

Voltage [V]

- DC voltage of the east/west-generator (Variant 1) follows the DC voltage of the east-generator (Variant 2) in the morning as well as the DC voltage of the west-generator (Variant 2) in the afternoon
- ~0.5% mismatching losses of the east/westgenerator with one single inverter
- Single inverter in variant 1 operates mostly in a higher efficiency range
- ~0.1% energy losses of installation variant 1 compared to installation variant 2

Irradiation and Temperature

100

80

60

ົວ

Ter

PV system 1: Minimal energy yield losses with installation variant 1

Characteristic of the east-west PV system:

PV system 2: Hardly any energy yield losses with installation variant 1

Characteristic of the east-west PV system:

CONCLUSION VARIANT 1

Low mismatching losses

 Matching losses depend on the inclination angle of the installed solar modules and on the used module technology

Inverter costs can be reduced

- Number of inverters
- Nominal power of the single inverter can be reduced by up to 35%
- Installation costs

Economically better solution

- Low energy yield losses
- Cost savings > Energy yield losses
- Payback time of the PV system is shorter

Basic installation rules

- Shading must be avoided
- Number of solar modules must be identical in all strings
- Within a single string the directions of the solar modules must be identical (inclination

- Solar modules: a-Si
- Orientation: -67,5° east / 112,5° west
- Inclination angle: 30°

Energy yield comparison – 3 months:

- ~1% energy losses of the east/west-generator with one single inverter compared to the east/west-generator with separate inverters
- Annual energy losses are smaller than 1%

Cost savings - installation variant 1:

- One inverter
- Nominal power of the single inverter can be
- 15% lower than the sum of the nominal power of the separate inverters

- Solar modules: c-Si
- Orientation: -90° east / 90° west
- Inclination angle: 15°

Energy yield comparison – 3 months:

• The energy yield of the east/west-generator with one single inverter is nearly equal to the values of the east/west-generator with separate inverters

Cost savings - installation variant 1:

- One inverter
- Nominal power of the single inverter can be 5% lower than the sum of the nominal power of the separate inverters

angle and orientation of the solar modules)

Installation costs

Installation costs

FRONIUS INTERNATIONAL GMBH Froniusplatz 1, 4600 Wels, Austria E-Mail: PV@fronius.com www.fronius.com